Configuring Airwall

Configuring Airwall

In a previous post I have already shared some information about the Airwall solution from Tempered Networks. In this blog, I will share my experiences in configuring and operating the Airwall solution. I have been running an Airwall setup to test for a number of months.

Airwall components

Before moving into the configuration aspect, let’s first describe the components of the Airwall solution.

Airwall Conductor

The conductor is the “heart” of the Airwall solution. It is the SDN controller (running on-prem or in a cloud) with which you manage all Airwall components and configure the different policies.

Airwall Agent

The airwall agent is a software component that is running on your user endpoint devices, such as your smartphone, tablet, laptop or desktop. It is effectively the client that connects to gateways and Airwall Server agents. 

Airwall Server agent

The Airwall Server agent is the software component that you can install on individual servers. You might say that it is comparable with the Airwall agent, except it runs faceless and is optimized for running on your servers. I have been running one on a virtual server I have hosted in the cloud. 

Airwall Gateway

The airwall gateway is a special component within the solution. You can use it to secure networks behind a gateway with agents. E.g., if you allow a connection from an agent to a gateway, you are able to securely connect from the agent through the gateway to multiple hosts or networks behind the gateway. The gateway comes in different flavors, a virtual machine, a cloud instance, a physical gateway for wired connections, and a phyisical gateway that connects to the unsecure networks via WiFi. The gateway is also capable of acting as a relay agent between agents that cannot communicate directly with each other, but only if you have specified and allow that communication in the conductor.  

Overlay networks

Overlay networks within Airwall are a bit different compared to the traditional overlay networks seen with VPN solutions, which is also what makes Airwall unique in its approach. An overlay network is basically a secured IP network that can be configured between agents, servers, and gateways. And the unique twist is that you can manage completely different overlay networks and configure a policy that a single agent can communicate via these different overlay networks.

My personal experience is that I initially misinterpreted overlay networks and thought of it as a single network with unique policies; it is easier to see each overlay network as a security policy that defines who can securely communicate with who at which moment in time. 

Underlay network

The underlay networks is your regular network, or the Internet. It is the insecure network via which you connect the different Airwall components. The conductor of course needs to be reachable via the underlay network.

Getting started

The team at Tempered networks was kind enough to provide me with a complete set of components to test with and try out use cases. My kit consisted of agents for my iOS devices, my laptops, 1 virtual gateway (Cloud), 2 physical gateways (one wired, one wireless), a server agent and a conductor.

Getting started with the conductor is pretty much straight forward, after running through the provisioning guide, you have the link to the conductor portal, which provides a good overview of your environment. The tab labels itself speak for itself. Now that the conductor is setup correctly, it is time to download and provision agents.

 

For the physical gateway, it was effectively the same setup. Hook a serial console to the device, configure the hostname and port for the conductor, activate the device and you can define your policies.

I used the provided download links to download an agent to my Mac and used the App-Store to download the iOS apps. Once they are downloaded, you provide the agent with a profile that contains the hostname and port to your conductor. It took me a while to figure out that I had to manually approve the license before further configuration was possible. So after you’ve configured your agent, go back to the conductor and hit the settings -> Licensing tab. Activate the just registered device and a license will be consumed. With that action, the airwall agent/gateway becomes active.

Remember, the gateway has different behavior compared to the agent with more functionality. Make sure that the communication ports you defined in the Conductor are available via the underlay networks. It took me a while to figure that out (I assumed too much routing in my mind), and once I had the PAT configured correctly, the gateway was working as expected and the agent on my mac could communicate with it. If you use NAT, you can configure the external IP address for the gateway via the conductor (auto-detect and auto-set would be great when you have dynamic outbound IP-addresses and relay on PAT). The screen shot below shows the setting for my gateway.

In my next post, I will give you a sample underlay network that I have been using very succesfull (including demos and firepower trainings) over the past months.

FDM Application fails after upgrade

FDM Application fails after upgrade

This is just a quick blog post for those that might have FDM issues after upgrading your FTD software.

I have recently updated my Firepower appliance from 6.5.0 to 6.5.0.2. One of the reasons to update is not only that 6.5.0 is a .0 release, but also that I noticed some failed rule-update deployments that set snort to block all traffic.

Unfortunately, after upgrading, FDM reported an error that it could not be launched with an application failure error. The suggested action was to remove the manager, add a new local manager and begin from scratch. This is the error: “The Firepower Device Manager application cannot be opened. Please try again”

While googling for a possible caveat of this behavior on 6.5.0.2, I came across a caveat in 6.2.3 that has the same behavior. 

That caveat has supported me in fixing my solution. What I did was executing the following commands:

 

> expert
**************************************************************
NOTICE - Shell access will be deprecated in future releases
         and will be replaced with a separate expert mode CLI.
**************************************************************
admin@na-grm-ftd01:~$ sudo su -
Password: 
root@my-ftd01:httpd# cd /ngfw/var/cisco/ngfwWebUi/
root@my-ftd01:ngfwWebUi# ls -a
.   .bootstrap-failed  clifile    deploy                      ha_pkg  lina_cli_sqlite_stores   pjb_output  sslCiphers  variables.ftd_onbox
..  bin                clisyncer  ftd_onbox_6.5.0.2_previous  libs    ngfw_onbox_bootstrap.sh  sru         tomcat      version

root@my-ftd01:ngfwWebUi# rm .bootstrap-failed 
root@my-ftd01:pmtool disablebyid tomcat
root@my-ftd01:pmtool enablebyid tomcat

Basically, you go into expert mode, find the tomcat directory used for FDM and then remove a status file and try to restart it.

With me, this worked and helped me get back access to FDM. Should you run into issues with FDM after an upgrade, this “hack” might help you.

Disclaimer: You are entering expert mode of FTD, it means you can DESTROY your FTD configuration and box. Be aware of what you are doing and make sure you have a backup. 

Configuring Airwall

Upgrading Firepower1010 to 6.5

The Cisco FirePower 1010 appliance (FP1010, successor to the ASA5506 which can run FTD 6.3 and higher) has finally become available. As I am relocating to a new home, it was time to replace my trusty 5506-X with the FP1010 and get a new fresh start with FTD. Since FTD 6.5 is just out, and it enables the switchports on the FP1010, it was time to upgrade the appliance. In this post I will share my method of upgrading the FP1010 to the latest version, 6.5. 

Time to get started with the upgrade. In this blog post I assume the FP1010 appliance has never been booted and has just been unboxed. You need to have the following items

  • Laptop with FTP/SCP/SFTP server (TFTP is possible, I had issues with USB); I used my MacBookPro for this
  • Laptop connected to the management interface of the FP1010
  • The upgrade image, in my case: cisco-ftd-fp1k.6.5.0-115.SPA

Once you have everything ready, the following steps can be used to upgrade the FP1010 appliance:

Firepower architecture

Firepower appliances are really a different platform to the trusty old ASA platform. One of the architectural differences is that the appliance is running FXOS as the operating system and the security services you want to run (FTD or ASA) are installed as an instance. I think the best to compare it with is VMWare and running virtual services. FXOS looks a lot in its command set to the NFVIS operating system that runs on the ENCS series. It is based on the UCS platform and uses quite a different CLI then you are familiar with in the ASA world. 

The larger appliances (FP4100 and FP9300) FXOS and the security instances are separated, which means that you first configure FXOS and then you can load the security instance on it. The smaller Firepower appliances, such as the FP2100, FP1100 and the FP1000 series have FXOS and the security instance bundled in a single release. This means that you always run a specific FXOS system with a specific ASA or FTD version.

1.  Connect the console of the FP1010 to the laptop and power on the appliance
2.  Connect a network cable from the mgmt interface to your laptop

3.  Wait until the FP1010 is booted. Once it’s booted, the console will show:

firepower#

4.  Type the command “connect ftd” and run through the initial setup wizard. If you do not accept the EULA and run through the setup, somehow the network is not working as expected and you cannot download the software. And yes, that took me some hours to figure out…

You must accept the EULA to continue.Press <ENTER> to display the EULA:
 
End User License Agreement

Effective: May 22, 2017

*** SNIP***
Please enter 'YES' or press  to AGREE to the EULA: YES

System initialization in progress.  Please stand by.
You must change the password for 'admin' to continue.
Enter new password:
Confirm new password:
You must configure the network to continue.
You must configure at least one of IPv4 or IPv6.
Do you want to configure IPv4? (y/n) [y]: y
Do you want to configure IPv6? (y/n) [n]: n
Configure IPv4 via DHCP or manually? (dhcp/manual) [manual]:
Enter an IPv4 address for the management interface [192.168.45.45]:
Enter an IPv4 netmask for the management interface [255.255.255.0]:
Enter the IPv4 default gateway for the management interface [data-interfaces]:
Enter a fully qualified hostname for this system [firepower]:
Enter a comma-separated list of DNS servers or 'none' [208.67.222.222,208.67.220.220]:
Enter a comma-separated list of search domains or 'none' []:
If your networking information has changed, you will need to reconnect.

Setting DNS servers: 208.67.222.222 208.67.220.220
No domain name specified to configure.
Setting hostname as firepower
DHCP server is enabled with pool: 192.168.45.46-192.168.45.254. You may disable with configure network ipv4 dhcp-server-disable
Setting static IPv4: 192.168.45.45 netmask: 255.255.255.0 gateway: data on management0
Updating routing tables, please wait...
All configurations applied to the system. Took 3 Seconds.
Saving a copy of running network configuration to local disk.
For HTTP Proxy configuration, run 'configure network http-proxy'

Manage the device locally? (yes/no) [yes]: yes
Configuring firewall mode to routed


Update policy deployment information
    - add device configuration
Successfully performed firstboot initial configuration steps for Firepower Device Manager for Firepower Threat Defense.

5.  After the setup, the console will have a very empty prompt: “>” Now type exit The prompt will now look like firepower# 

6. This means you are now in FXOS , this looks like UCS CIMC software, so it is a bit different.
Enter the command scope firmware , the prompt will show

firepower /firmware
7. Check the IP address of your laptop and initiate the software download via the command structure

download image sftp://userid@iplaptop/path/to-image/cisco-ftd-fp1k.6.5.0-115.SPA

I have used

download image sftp://myuserid@192.168.45.46/Users/myuserid/Downloads/cisco-ftd-fp1k.6.5.0-115.SPA

The console will now prompt for your password and then it will initiate a download task:

firepower /firmware # download image scp://myuserid@192.1687.45.46:/Users/myuserid/Downloads/cisco-ftd-fp1k.6.5.0-115.SPA
Password:
Please use the command 'show download-task' or 'show download-task detail' to check download progress.

You can use the “show download-task detail” to show the details, which has output like

Download task:
File Name: cisco-ftd-fp1k.6.5.0-115.SPA
Protocol: Sftp
Server: 192.168.45.46
Port: 0
Userid: myuserId
Path: /Users/myuserId/Downloads
Downloaded Image Size (KB): 59264
Time stamp: 2019-10-07T06:48:09.268
State: Downloading
Status: Downloading the image
Transfer Rate (KB/s): 29632.000000
Current Task: downloading image cisco-ftd-fp1k.6.5.0-115.SPA from 192.168.45
.46(FSM-STAGE:sam:dme:FirmwareDownloaderDownload:Local)

However, if there is a failure, it will only show “failed“. I found out that the command

show event provides much more information, but requires a bit decoding. The following output is from a successful download:
Creation Time            ID       Code     Description
------------------------ -------- -------- -----------
2019-10-07T06:48:09.269     27339 E4195702 [FSM:STAGE:END]: (FSM-STAGE:sam:dme:F
irmwareDownloaderDownload:begin)
2019-10-07T06:48:09.269     27340 E4195703 [FSM:STAGE:END]: checking pending man
agement network config(FSM-STAGE:sam:dme:FirmwareDownloaderDownload:CheckPending
NetworkConfig)
2019-10-07T06:48:09.269     27341 E4195704 [FSM:STAGE:ASYNC]: downloading image
cisco-ftd-fp1k.6.5.0-115.SPA from 192.168.45.46(FSM-STAGE:sam:dme:FirmwareDownlo
aderDownload:Local)
But if there is a failure, it would look a bit more like this

 

2019-10-07T06:47:40.120     27329 E4195706 [FSM:STAGE:REMOTE-ERROR]: Result: end
-point-failed Code: ERR-DNLD-no-file Message: No such file#(sam:dme:FirmwareDown
loaderDownload:DeleteLocal)

It tells you it couldn’t find the file. The show event is quite handy.
Once the download is completed, the show detail command would look like this:

Download task:
    File Name: cisco-ftd-fp1k.6.5.0-115.SPA
    Protocol: Sftp
    Server: 192.168.45.46
    Port: 0
    Userid: nefkensp
    Path: /Users/nefkensp/Downloads
    Downloaded Image Size (KB): 1031174
    Time stamp: 2019-10-07T06:48:09.268
    State: Downloading
    Status: validating and unpacking the image
    Transfer Rate (KB/s): 32224.187500
    Current Task: unpacking image cisco-ftd-fp1k.6.5.0-115.SPA on primary(FSM-ST

8.  Now that the software is downloaded, it is time to validate if the package is available. Use the command show package to check for that:

firepower /firmware # show package
Name Package-Vers
--------------------------------------------- ------------
cisco-ftd-fp1k.6.4.0-102.SPA 6.4.0-102
cisco-ftd-fp1k.6.5.0-115.SPA 6.5.0-115

9.  Now as the package is available, let’s install it. Go to the subscope auto-install:

firepower /firmware # scope auto-install
firepower /firmware/auto-install # 
 

10.  and install the package via the install security-pack version command:

firepower /firmware/auto-install # install security-pack version 6.5.0-115 
The system is currently installed with security software package 6.4.0-102, which has:
   - The platform version: 2.6.1.133
   - The CSP (ftd) version: 6.4.0.102
If you proceed with the upgrade 6.5.0-115, it will do the following:
   - upgrade to the new platform version 2.7.1.107
During the upgrade, the system will be reboot

Do you want to proceed ? (yes/no):yes

This operation upgrades firmware and software on Security Platform Components
Here is the checklist of things that are recommended before starting Auto-Install
(1) Review current critical/major faults
(2) Initiate a configuration backup

Do you want to proceed? (yes/no):yes

Triggered the install of software package version 6.5.0-115
Install started. This will take several minutes.
For monitoring the upgrade progress, please enter 'show' or 'show detail' command. 

11. Now let’s wait for the upgrade or use the “show” command to check the status:

firepower /firmware/auto-install # show

Firmware Auto-Install:
    Package-Vers Oper State                   Upgrade State
    ------------ ---------------------------- -------------
    6.5.0-115    Scheduled                    Ready
firepower /firmware/auto-install #

12.  And after waiting for some 20-30 minutes, FTD has been upgraded. Congratulations!

Configuring Airwall

Assigning a single IPv6 address to devices

I have been running IPv6 and IPv4 concurrently. At Cisco Live San Diego 2019  I shared some of my experiences with Jeffry Handal (I met him initially at CiscoLive Barcelona 2019)  and somewhow we ended up talking about IPv6 and how by default you receive multiple IPv6 addresses. To me, that was one of my frustrations, so my network is setup in such a way that it only assigns a single IPv6 address. It appears that such a setup is not very common. So I would like to share with you how my IPv6 network is configured.

My network consists of an ASA firewall (soon to be replaced with the FirePower 1010), a 3560 compact switch that acts as L3 switch, and a Catalyst 9800 Wireless Controller (yep, moved from Mobility Express to the Cat9k wireless IOS-XE). The figure below shows my network topology.

In this network setup, the 3560 acts as L3 switch and DHCP server (both IPv4 and IPv6). It is absolutely possible to use an external DHCP server and use helpers instead. But for my home network that is, well, not necessary. The configuration on the client VLAN is shown below:

interface Vlan300
 description clients
 ip address 192.168.1.1 255.255.255.0
 ipv6 address FE80::300 link-local
 ipv6 address 2001: db8:face:300::1/64
 ipv6 enable
 ipv6 nd prefix 2001:db8:face:300::/64 300 300 no-autoconfig
 ipv6 nd managed-config-flag
 ipv6 nd router-preference High
 ipv6 nd ra interval 30
 ipv6 dhcp server clients-300 rapid-commit
end

By setting the managed-config-flag and disabling auto-config on the prefix I effectively state that my switch is the only router and device allowed to assign and distribute IPv6 addresses. I effectively disable every auto-magic feature within IPv6 except DHCPv6. The configuration I use for that DHCPv6 server is defined below:

ipv6 dhcp database flash:dhcpv6-db
ipv6 dhcp pool clients-300
 address prefix 2001:db8:face:300::/64 lifetime 86400 86400
 link-address 2001:db8:face:300::/64
 dns-server 2620:119:35::35
 dns-server 2620:119:53::53
 domain-name clients.nefkens.net
!

Using this configuration all my devices (and yes, Jeffry told me that Android devices do not support DHCPv6 so go complain at Google for that) receive a single IPv6 address, as can be shown in the screen shot below.

Although it might not be common, it is very much possible to use DHCPv6 and only assign a single IPv6 address to each device. It will make your life for troubleshooting or looking at management systems, such as Firepower Management Center, DNA Center, or Syslog server a lot easier.

Deploying a Cisco Mobility Express network

Deploying a Cisco Mobility Express network

My wireless network has been based on a WLC2504 controller with two 2602 AP’s. The network has been running quite well, with of course the caveats that came with the different WLC releases. With the maturity of Mobility Express (ME), the need for a dedicated controller for such as small sized wireless network has basically become obsolete as one of the AP’s becomes the master controller in the network. I was able to acquire 2 1852 AP’s with ME, time to upgrade my wireless network to 802.11ac with ME..
(more…)